HOMOLOGY: THEORETICAL AND COMPUTATIONAL ASPECTS

Massimo Ferri, Patrizio Frosini, Claudia Landi Generalized persistent homologies: *G*-invariant and multi-dimensional persistence

Genoa, 9-13 February 2015

Exercises on *G*-invariant persistence

(1) Let Φ be the set of all continuous functions from [0,1] to \mathbb{R} , endowed with the sup-norm. Let S be a subset of the group Homeo([0,1]) of the self-homeomorphisms of [0,1]. Is

$$d_{S}(\varphi_{1},\varphi_{2}) := \inf_{g \in S} \left\| \varphi_{1} - \varphi_{2} \circ g \right\|_{\infty}$$

a pseudo-metric on Φ ? Justify the answer.

(2) Let Φ be the set of all continuous functions from [0,1] to \mathbb{R} , endowed with the sup-norm. Find a subgroup G of the group Homeo([0,1]) of the self-homeomorphisms of [0,1] and two functions $\varphi_1, \varphi_2 \in \Phi$, such that

$$d_G(\varphi_1, \varphi_2) := \inf_{g \in G} \|\varphi_1 - \varphi_2 \circ g\|_{\infty} < \|\varphi_1 - \varphi_2 \circ \overline{g}\|_{\infty}$$

for every $\bar{g} \in G$. Can G be compact?

- (3) Let Φ be the set of all continuous functions from X to \mathbb{R} , endowed with the sup-norm. Let G be a subgroup of the group Homeo(X) of the self-homeomorphisms of X. If H is a subgroup of Homeo(X) such that
 - (a) *H* is finite (i.e. $H = \{h_1, ..., h_r\}$);
 - (b) $g \circ h \circ g^{-1} \in H$ for every $g \in G$ and every $h \in H$;
 - we say that H is associated with G.
 - i): Find a group H associated with G in the case that
 - $X = \mathbb{R}^2$ and G is the group of the "horizontal" translations of \mathbb{R}^2 ;
 - $X = S^1$ and G is the group of the rotations of S^1 ;
 - $X = \mathbb{R}^2$ and G is the group of the isometries of \mathbb{R}^2 .
 - ii): Is it possible to find a group H associated with G for any subgroup G of Homeo (S^1) ?
- (4) Find a set Φ of continuous functions from [0, 1] to \mathbb{R} (endowed with the supnorm) and a subgroup G of Homeo([0, 1]) such that the set of G-invariant non-expansive operators from Φ to Φ is not compact.
- (5) G-invariant non-expansive operators can be defined also when the space X is not compact. Find G-invariant non-expansive operators in the case that
 - $X = \mathbb{R}^2$, $\Phi = C^0(\mathbb{R}^2, \mathbb{R})$ and G is the group of translations;

• $X = \mathbb{R}^2$, $\Phi = C^0(\mathbb{R}^2, \mathbb{R})$ and G is the group of isometries.

The slides of the lecture about G-invariant persistence are available at this link: http://www.dm.unibo.it/~frosini/pdf/Lecture_Frosini_HTCA_2015.pdf